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using the direct simulation Monte Carlo method’ ”

Tadashi Watanabe, Hideo Kaburaki, and Mitsuo Yokokawa
Computing and Information Systems Center, Japan Atomic Energy Research Institute, Tokai-mura,
Naka-gun, Ibaraki-ken 319-11, Japan
(Received 31 October 1994)

In response to the preceding Comment by Garcia, Baras, and Mansour [Phys. Rev. E 51, 3784 (1995)],
we evaluate the Rayleigh number by taking the temperature jump at the wall into consideration. It is
shown that a good agreement between the direct simulation Monte Carlo results and the linear stability
theory is obtained by using the diffuse boundary condition, while there is a slight discrepancy in the case

of the semislip boundary condition.

PACS number(s): 47.11.+j, 47.20.Bp, 47.45.Gx, 47.70.Nd

The authors of the preceding Comment [1] criticize the
results of our paper [2] in which we performed the simu-
lation of not only the Rayleigh-Bénard (RB) convection
but also the heat conduction using the direct simulation
Monte Carlo (DSMC) method. The objective of our sys-
tematic simulation was to study the macroscopic flow in-
stability by a molecular-level computation. In this sense,
our simulation was a trial using a particle method. They
claim that the difference in critical Rayleigh number be-
tween the linear stability analysis and the DSMC method
with the semislip boundary condition is due to the tem-
perature jump near the wall. They also state that the
semislip condition is more economical than the diffuse
condition.

The existence of the temperature jump near the wall in
rarefied gas is well known. In DSMC calculations, it is
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FIG. 1. Midelevation temperatures obtained by using the
diffuse boundary condition. The temperatures are normalized
so that the temperatures of the top and bottom walls are 0.0 and
1.0, respectively. The temperatures near the side wall (side) and
at the center (center) are plotted together with the horizontal
average (Ave.). The case with the modified Rayleigh number
taking account of the temperature jump is denoted by “Mod.”
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significantly large when the semislip boundary condition,
in which only the normal component of velocity is
thermalized, is used even in the continuum region at a
low Knudsen number. On such a condition, the Rayleigh
number may be defined not by the wall temperatures but
by the calculated fluid temperatures at the wall. On the
other hand, if we use the diffuse boundary condition, in
which all the velocity components are thermalized based
on the equilibrium Maxwellian distribution, such a
modification is not necessary since the temperature jump
is small under the same condition. In this case, we can
compare the DSMC results with the hydrodynamic
theory directly.

In response to the preceding Comment, we evaluate
the Rayleigh number by taking account of the tempera-
ture jump. The temperature difference used for the eval-
uation of the Rayleigh number is defined not by the wall
temperatures but by the calculated fluid temperatures at
the wall. The midelevation temperatures obtained by the
diffuse boundary condition and the semislip boundary
condition are shown in Figs. 1 and 2, respectively. For a
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FIG. 2. Midelevation temperatures obtained using the sem-
islip boundary condition. See caption to Fig. 1.
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FIG. 3. An example of the transient of the
velocity field using the semislip boundary con-
dition.
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clearer comparison of the DSMC results and the hydro-
dynamic theory, the nondimensional temperatures are
plotted against the parameter (Ra—Ra_)/Ra,, where Ra
is the Rayleigh number in the DSMC calculation, and
Ra, is the critical Rayleigh number obtained by the
linear stability theory. The temperatures near the side
wall and at the center are denoted by ‘side” and
“center,” respectively, and the average temperature is
denoted by “Ave.” in these figures. The data points using
the Rayleigh number taking account of the temperature
jump are indicated by “(Mod.).”

As shown in Fig. 1, the temperature jump is almost
negligible under the diffuse boundary condition. This is
because our simulation condition with the Knudsen num-
ber of 0.016 almost corresponds to the continuum region.
The temperature bifurcation is observed at around
(Ra—Ra,)/Ra,=0, and the agreement between the
DSMC results and the hydrodynamic theory is still good.
On the other hand, in the case of the semislip boundary
condition, the temperature bifurcation is shifted
towards (Ra—Ra.)/Ra,=0 by taking account of the

temperature-jump effect as shown in Fig. 2. It is, howev-
er, seen that there is a slight discrepancy between the
DSMC results and the hydrodynamic theory.

As for the computational cost using the semislip
boundary condition, the statement of the authors of the
preceding Comment is not always the case. For instance,
the transient of convection rolls using the semislip bound-
ary condition is shown in Fig. 3 at a Rayleigh number
sufficiently higher than the critical value. In this figure,
three convection rolls appear first, and then the two of
them grow into stable rolls. More than 15000 time steps
are necessary in this case to get a stable convection. On
the other hand, the stable convection rolls are obtained
only after 3000 time steps using the diffuse boundary con-
dition [2]. The transient behavior of macroscopic flow
field is affected by the boundary and initial conditions.
Although the study of the transient flow is of importance,
a longer transient is not necessary when the field vari-
ables in steady-state convection rolls are of main interest,
and thus the semislip boundary condition is not always
“more economical.”
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